On nest modules of matrices over division rings

Authors

  • B. R. Yahaghi Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan 19395-5746, Iran.
  • M. Rahimi-Alangi Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran.
Abstract:

Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We then characterize submodules of nest modules of matrices over $D$ in terms of certain finite sequences of left row reduced echelon or right column reduced echelon matrices with entries from $D$. We use this result to characterize principal submodules of nest modules. We also describe subbimodules of nest modules of matrices. As a consequence, we characterize (one-sided) ideals of nest algebras of matrices over division rings.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on nest modules of matrices over division rings

let $ m , n in mathbb{n}$, $d$ be a division ring, and $m_{m times n}(d)$ denote the bimodule of all $m times n$ matrices with entries from $d$. first, we characterize one-sided submodules of $m_{m times n}(d)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $d$. next, we introduce the notion of a nest module of matrices with entries from $d$. we ...

full text

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

full text

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

full text

Endomorphism Rings of Modules over Prime Rings

Endomorphism rings of modules appear as the center of a ring, as the fix ring of a ring with group action or as the subring of constants of a derivation. This note discusses the question whether certain ∗-prime modules have a prime endomorphism ring. Several conditions are presented that guarantee the primeness of the endomorphism ring. The contours of a possible example of a ∗-prime module who...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 41  issue Issue 7 (Special Issue)

pages  47- 63

publication date 2015-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023